26,723 research outputs found

    CF6 jet engine performance improvement: High pressure turbine roundness

    Get PDF
    An improved high pressure turbine stator reducing fuel consumption in current CF6-50 turbofan engines was developed. The feasibility of the roundness and clearance response improvements was demonstrated. Application of these improvements will result in a cruise SFC reduction of 0.22 percent for new engines. For high time engines, the improved roundness and response characteristics results in an 0.5 percent reduction in cruise SFC. A basic life capability of the improved HP turbine stator in over 800 simulated flight cycles without any sign of significant distress is shown

    CF6 jet engine diagnostics program. High pressure turbine roundness/clearance investigation

    Get PDF
    The effects of high pressure turbine clearance changes on engine and module performance was evaluated in addition to the measurement of CF6-50C high pressure turbine Stage 1 tip clearance and stator out-of-roundness during steady-state and transient operation. The results indicated a good correlation of the analytical model of round engine clearance response with measured data. The stator out-of-roundness measurements verified that the analytical technique for predicting the distortion effects of mechanical loads is accurate, whereas the technique for calculating the effects of certain circumferential thermal gradients requires some modifications. A potential for improvement in roundness was established in the order of 0.38 mm (0.015 in.), equivalent to 0.86 percent turbine efficiency which translates to a cruise SFC improvement of 0.36 percent. The HP turbine Stage 1 tip clearance performance derivative was established as 0.44 mm (17 mils) per percent of turbine efficiency at take-off power, somewhat smaller, therefore, more sensitive than predicted from previous investigations

    Apparatus for reducing aerodynamic noise in a wind tunnel

    Get PDF
    An apparatus is described for reducing the background noise produced by the porous walls of the test section of a wind tunnel. A finely meshed screen member is placed over the perforations in the test section walls. The mesh wire screen attached to the interior wall provides a smoother surface for the air stream to flow against reducing the vorticies produced by the edges of the perforations in the test section walls

    Solution of the inverse scattering problem by T-matrix completion. II. Simulations

    Full text link
    This is Part II of the paper series on data-compatible T-matrix completion (DCTMC), which is a method for solving nonlinear inverse problems. Part I of the series contains theory and here we present simulations for inverse scattering of scalar waves. The underlying mathematical model is the scalar wave equation and the object function that is reconstructed is the medium susceptibility. The simulations are relevant to ultrasound tomographic imaging and seismic tomography. It is shown that DCTMC is a viable method for solving strongly nonlinear inverse problems with large data sets. It provides not only the overall shape of the object but the quantitative contrast, which can correspond, for instance, to the variable speed of sound in the imaged medium.Comment: This is Part II of a paper series. Part I contains theory and is available at arXiv:1401.3319 [math-ph]. Accepted in this form to Phys. Rev.

    Nonlinear inverse problem by T-matrix completion. I. Theory

    Full text link
    We propose a conceptually new method for solving nonlinear inverse scattering problems (ISPs) such as are commonly encountered in tomographic ultrasound imaging, seismology and other applications. The method is inspired by the theory of nonlocality of physical interactions and utilizes the relevant formalism. We formulate the ISP as a problem whose goal is to determine an unknown interaction potential VV from external scattering data. Although we seek a local (diagonally-dominated) VV as the solution to the posed problem, we allow VV to be nonlocal at the intermediate stages of iterations. This allows us to utilize the one-to-one correspondence between VV and the T-matrix of the problem, TT. Here it is important to realize that not every TT corresponds to a diagonal VV and we, therefore, relax the usual condition of strict diagonality (locality) of VV. An iterative algorithm is proposed in which we seek TT that is (i) compatible with the measured scattering data and (ii) corresponds to an interaction potential VV that is as diagonally-dominated as possible. We refer to this algorithm as to the data-compatible T-matrix completion (DCTMC). This paper is Part I in a two-part series and contains theory only. Numerical examples of image reconstruction in a strongly nonlinear regime are given in Part II. The method described in this paper is particularly well suited for very large data sets that become increasingly available with the use of modern measurement techniques and instrumentation.Comment: This is Part I of a paper series containing theory only. Part II contains simulations and is available as arXiv:1505.06777 [math-ph]. Accepted in this form to Phys. Rev.

    Occurrence and core-envelope structure of 1--4x Earth-size planets around Sun-like stars

    Get PDF
    Small planets, 1-4x the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R_e planets with orbital periods under 100 days, and 11% have 1-2 R_e planets that receive 1-4x the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 AU, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R_e show that the smallest of them, R < 1.5 R_e, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: rho = 2.32 + 3.19 R/R_e [g/cc]. Larger planets, in the radius range 1.5-4.0 R_e, have densities that decline with increasing radius, revealing increasing amounts of low-density material in an envelope surrounding a rocky core, befitting the appellation "mini-Neptunes." Planets of ~1.5 R_e have the highest densities, averaging near 10 g/cc. The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. One explanation is that the fast formation of rocky cores in protoplanetary disks enriched in heavy elements permits the gravitational accumulation of gas before it vanishes, forming giant planets. But models of the formation of 1-4 R_e planets remain uncertain. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins.Comment: 11 pages, 6 figures, accepted for publication Proc. Natl. Acad. Sc

    Prevalence of Earth-size planets orbiting Sun-like stars

    Get PDF
    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size (1-2 Earth-radii) and receive comparable levels of stellar energy to that of Earth (within a factor of four). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11±411\pm4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to 200\sim200 d. Extrapolating, one finds 5.72.2+1.75.7^{+1.7}_{-2.2}% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.Comment: Main text: 6 pages, 5 figures, 1 table. Supporting information: 54 pages, 17 pages, 3 tables. Published in the Proceedings of the National Academy of Sciences available at http://www.pnas.org/cgi/doi/10.1073/pnas.131990911

    Radial velocities from the N2K Project: 6 new cold gas giant planets orbiting HD 55696, HD 98736, HD 148164, HD 203473, and HD 211810

    Get PDF
    The N2K planet search program was designed to exploit the planet-metallicity correlation by searching for gas giant planets orbiting metal-rich stars. Here, we present the radial velocity measurements for 378 N2K target stars that were observed with the HIRES spectrograph at Keck Observatory between 2004 and 2017. With this data set, we announce the discovery of six new gas giant exoplanets: a double-planet system orbiting HD 148164 (MsiniM \sin i of 1.23 and 5.16 MJUP_{\rm JUP}) and single planet detections around HD 55696 (MsiniM \sin i = 3.87 MJUP_{\rm JUP}), HD 98736 (MsiniM \sin i = 2.33 MJUP_{\rm JUP}), HD 203473 (MsiniM \sin i = 7.8 MJUP_{\rm JUP}), and HD 211810 (MsiniM \sin i = 0.67 MJUP_{\rm JUP}). These gas giant companions have orbital semi-major axes between 1.0 and 6.2 AU and eccentricities ranging from 0.13 to 0.71. We also report evidence for three gravitationally bound companions with MsiniM \sin i between 20 to 30 MJUP_{\rm JUP}, placing them in the mass range of brown dwarfs, around HD 148284, HD 214823, and HD 217850, and four low mass stellar companions orbiting HD 3404, HD 24505, HD 98630, and HD 103459. In addition, we present updated orbital parameters for 42 previously announced planets. We also report a nondetection of the putative companion HD 73256 b. Finally, we highlight the most promising candidates for direct imaging and astrometric detection, and find that many hot Jupiters from our sample could be detectable by state-of-the-art telescopes such as Gaia.Comment: Accepted by the Astronomical Journal. 75 pages, 49 figure

    Collective force generation by groups of migrating bacteria

    Full text link
    From biofilm and colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. While considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here for the first time using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus, namely twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching of bacterial groups also produces traction hotspots, however with amplified forces around 100 pN. Although twitching groups migrate slowly as a whole, traction fluctuates rapidly on timescales <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified in groups by a factor of ~5. Since advancing protrusions of gliding cells push on average in the direction of motion, we infer a long-range compressive load sharing among sub-leading cells. Together, these results show that the forces generated during twitching and gliding have complementary characters and both forces are collectively amplified in groups

    An Understanding of the Shoulder of Giants: Jovian Planets around Late K Dwarf Stars and the Trend with Stellar Mass

    Get PDF
    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75Msun and effective temperatures of 3900-4800K). We analyzed four years of Doppler radial velocities data of 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0+/-2.3% of these stars have Saturn-mass or larger planets with orbital periods <245d, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7+/-0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g. a "shoulder" in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.Comment: Accepted to The Astrophysical Journa
    corecore